论文标题

超导体超过平均场理论的拓扑

Topology of superconductors beyond mean-field theory

论文作者

Lapa, Matthew F.

论文摘要

拓扑超导性的研究很大程度上是基于对违反粒子数量保存且仅具有短距离相互作用的平均田野哈密顿量的分析。尽管这种方法非常成功,但尚不清楚它捕获了真正的超导体的拓扑特性,这些拓扑特性是通过与长期相互作用的数字支持的汉密尔顿人描述的。为了解决这个问题,我们直接在数量控制环境中研究拓扑超导率。我们重点介绍了拓扑超导性的诊断,该诊断比较了一个系统中系统基础状态的费米亚平价$ \ MATHCAL {p} $,并且在零的存在下,零与$φ_ {\ text {sc}} = \ frac {sc}} = \ frac {h} {2e} {2e} {2e} {2e} {2e} {2e} \ equiv ux an an an an an an an an an。此诊断的一个版本存在于任何维度,并提供了$ \ Mathbb {z} _2 $不变$ν= \ Mathcal {p} _0 \ Mathcal {p}_π$用于拓扑超导性。在本文中,我们证明了平均场近似值正确预测了一个$ν$的价值,这是一个无旋转超导体的大型连接模型。我们的结果直接适用于最大的物理兴趣案例,包括$ p $ - 波和$ p_x+ip_y $ $ superconductors在一个和二维中,并在研究(至少某些方面)拓扑超导性的研究中为平均场近似值的有效性提供了有力的证据。

The study of topological superconductivity is largely based on the analysis of mean-field Hamiltonians that violate particle number conservation and have only short-range interactions. Although this approach has been very successful, it is not clear that it captures the topological properties of real superconductors, which are described by number-conserving Hamiltonians with long-range interactions. To address this issue, we study topological superconductivity directly in the number-conserving setting. We focus on a diagnostic for topological superconductivity that compares the fermion parity $\mathcal{P}$ of the ground state of a system in a ring geometry and in the presence of zero vs. $Φ_{\text{sc}}=\frac{h}{2e} \equiv π$ flux of an external magnetic field. A version of this diagnostic exists in any dimension and provides a $\mathbb{Z}_2$ invariant $ν=\mathcal{P}_0\mathcal{P}_π$ for topological superconductivity. In this paper we prove that the mean-field approximation correctly predicts the value of $ν$ for a large family of number-conserving models of spinless superconductors. Our result applies directly to the cases of greatest physical interest, including $p$-wave and $p_x+ip_y$ superconductors in one and two dimensions, and gives strong evidence for the validity of the mean-field approximation in the study of (at least some aspects of) topological superconductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源