论文标题
深度学习辅助CSI估计联合URLLC和EMBB资源分配
Deep Learning Assisted CSI Estimation for Joint URLLC and eMBB Resource Allocation
论文作者
论文摘要
多输入多出输出(MIMO)是第五代(5G)和无线通信系统的关键,这是由于较高的频谱效率,空间提升和能源效率。如果在发射器侧获得通道状态信息(CSI),则可以完全利用MIMO传输的好处。但是,收购发射器侧CSI带来了许多挑战。在本文中,我们建议在高度移动的车辆网络中进行深度学习辅助的CSI估计技术,因为传播环境(散射器,反射器)几乎相同,从而允许数据驱动的深度神经网络(DNN)学习非线性CSI的CSI关系与可忽略不可忽略的CSI。此外,我们为车辆用户设备(VUE)(VUE)制定并解决了基于动态网络切片的资源分配问题,要求增强的移动宽带(EMBB)和超可靠的低潜伏期(URLLC)流量切片。该公式考虑了EMBB切片的阈值违规概率最小化,同时满足了URLLC切片的概率阈值率标准。模拟结果表明,与理想的CSI知识相比,阈值违规行为增加了12%,可以实现50%的高架降低。
Multiple-input multiple-output (MIMO) is a key for the fifth generation (5G) and beyond wireless communication systems owing to higher spectrum efficiency, spatial gains, and energy efficiency. Reaping the benefits of MIMO transmission can be fully harnessed if the channel state information (CSI) is available at the transmitter side. However, the acquisition of transmitter side CSI entails many challenges. In this paper, we propose a deep learning assisted CSI estimation technique in highly mobile vehicular networks, based on the fact that the propagation environment (scatterers, reflectors) is almost identical thereby allowing a data driven deep neural network (DNN) to learn the non-linear CSI relations with negligible overhead. Moreover, we formulate and solve a dynamic network slicing based resource allocation problem for vehicular user equipments (VUEs) requesting enhanced mobile broadband (eMBB) and ultra-reliable low latency (URLLC) traffic slices. The formulation considers a threshold rate violation probability minimization for the eMBB slice while satisfying a probabilistic threshold rate criterion for the URLLC slice. Simulation result shows that an overhead reduction of 50% can be achieved with 12% increase in threshold violations compared to an ideal case with perfect CSI knowledge.