论文标题
有限体积的数值边界条件和不连续的Galerkin方案,以模拟沿固体边界的稀有流量
Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries
论文作者
论文摘要
我们提出了两个标准有限体积方案与应用于稀有气体动力学BGK方程的不连续的盖金方法之间的数值比较。我们特别注意数值边界条件,以保留该方法的收敛速度。我们的大多数分析都取决于1D问题(COUETTE流),但我们也为2D空气动力学流提供了一些结果。
We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.