论文标题

有限体积的数值边界条件和不连续的Galerkin方案,以模拟沿固体边界的稀有流量

Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries

论文作者

Baranger, Céline, Hérouard, Nicolas, Mathiaud, Julien, Mieussens, Luc

论文摘要

我们提出了两个标准有限体积方案与应用于稀有气体动力学BGK方程的不连续的盖金方法之间的数值比较。我们特别注意数值边界条件,以保留该方法的收敛速度。我们的大多数分析都取决于1D问题(COUETTE流),但我们也为2D空气动力学流提供了一些结果。

We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源