论文标题

有条件的卷积

Conditional Convolutions for Instance Segmentation

论文作者

Tian, Zhi, Shen, Chunhua, Chen, Hao

论文摘要

我们提出了一个简单而有效的实例分割框架,称为condinst(例如分割)。最佳实例分割方法(例如蒙版R-CNN)依赖ROI操作(通常是Roipool或Roialign)来获得最终实例掩码。相比之下,我们建议从新的角度解决实例分割。我们没有使用实例ROI作为固定权重网络的输入,而是采用以实例为条件的动态实例感知网络。 Condinst具有两个优势:1)实例分段是通过完全卷积的网络来解决的,从而消除了对ROI种植和特征对齐的需求。 2)由于动态生成的条件卷积的能力大大提高,掩盖头可能非常紧凑(例如3个转换层,每个层只有8个通道),从而导致推断速度明显更快。我们演示了一种更简单的实例分割方法,该方法可以在准确性和推理速度方面提高性能。在可可数据集上,我们的表现均优于最近的一些方法,包括精心调整的蒙版RCNN基准,而无需更长的培训时间表。 可用代码:https://github.com/aim-uofa/adet

We propose a simple yet effective instance segmentation framework, termed CondInst (conditional convolutions for instance segmentation). Top-performing instance segmentation methods such as Mask R-CNN rely on ROI operations (typically ROIPool or ROIAlign) to obtain the final instance masks. In contrast, we propose to solve instance segmentation from a new perspective. Instead of using instance-wise ROIs as inputs to a network of fixed weights, we employ dynamic instance-aware networks, conditioned on instances. CondInst enjoys two advantages: 1) Instance segmentation is solved by a fully convolutional network, eliminating the need for ROI cropping and feature alignment. 2) Due to the much improved capacity of dynamically-generated conditional convolutions, the mask head can be very compact (e.g., 3 conv. layers, each having only 8 channels), leading to significantly faster inference. We demonstrate a simpler instance segmentation method that can achieve improved performance in both accuracy and inference speed. On the COCO dataset, we outperform a few recent methods including well-tuned Mask RCNN baselines, without longer training schedules needed. Code is available: https://github.com/aim-uofa/adet

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源