论文标题

基于BLSTM网络的基于巴西歌词的音乐类型分类

Brazilian Lyrics-Based Music Genre Classification Using a BLSTM Network

论文作者

Lima, Raul de Araújo, de Sousa, Rômulo César Costa, Barbosa, Simone Diniz Junqueira, Lopes, Hélio Cortês Vieira

论文摘要

可以在类型标签的帮助下以共同相似性来组织歌曲,专辑和艺术家。在本文中,我们介绍了一种新颖的方法,用于仅使用歌曲歌词在巴西音乐中自动分类音乐类型。在自然语言处理领域,这种分类仍然是一个挑战。我们构建了一个138,368个巴西歌曲歌词的数据集,该歌词以14种流派分发。我们应用SVM,随机森林和双向长期记忆(BLSTM)网络,结合了不同的单词嵌入技术来解决此分类任务。我们的实验表明,BLSTM方法的表现优于其他模型,F1得分平均值为0.48美元。分别在巴西音乐类型的环境中,分别将“福音”,“福音”,“ Funk-Carioca”和“ Sertanejo”(分别获得F1得分的0.89、0.70和0.69)定义为最独特,最易于分类的类型。

Organize songs, albums, and artists in groups with shared similarity could be done with the help of genre labels. In this paper, we present a novel approach for automatic classifying musical genre in Brazilian music using only the song lyrics. This kind of classification remains a challenge in the field of Natural Language Processing. We construct a dataset of 138,368 Brazilian song lyrics distributed in 14 genres. We apply SVM, Random Forest and a Bidirectional Long Short-Term Memory (BLSTM) network combined with different word embeddings techniques to address this classification task. Our experiments show that the BLSTM method outperforms the other models with an F1-score average of $0.48$. Some genres like "gospel", "funk-carioca" and "sertanejo", which obtained 0.89, 0.70 and 0.69 of F1-score, respectively, can be defined as the most distinct and easy to classify in the Brazilian musical genres context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源