论文标题
关于自动预测错误和非BUG问题的可行性
On the feasibility of automated prediction of bug and non-bug issues
论文作者
论文摘要
上下文:问题跟踪系统用于跟踪和描述开发过程中的任务,例如,请求的功能改进或报告的错误。但是,过去的研究表明,报告的问题类型通常与该问题的描述不符。 目的:我们想了解问题类型的艺术状态预测状态的整体成熟度,以预测问题是否为错误,并评估我们是否可以通过将手动指定的有关问题的知识纳入现有模型。 方法:我们为问题的标题和描述训练不同的模型,以说明这些字段之间的结构差异,例如长度。此外,我们手动检测其描述包含无效指针异常的问题,因为这些是问题是错误的强烈指标。 结果:我们的方法总体上表现最好,但与基于Facebook AI研究的FastText分类器的方法没有显着差异。预测性能的小改进是由于有关我们使用的问题的结构信息。我们发现,以无效指针异常的形式使用有关问题内容的信息无用。我们通过标记错误将fum -fixing提交的示例来证明问题类型预测的有用性。 结论:如果用例允许使用一定量的错误报告或预测过多的问题,则问题类型预测可以是一个有用的工具,因为错误是可以接受的。
Context: Issue tracking systems are used to track and describe tasks in the development process, e.g., requested feature improvements or reported bugs. However, past research has shown that the reported issue types often do not match the description of the issue. Objective: We want to understand the overall maturity of the state of the art of issue type prediction with the goal to predict if issues are bugs and evaluate if we can improve existing models by incorporating manually specified knowledge about issues. Method: We train different models for the title and description of the issue to account for the difference in structure between these fields, e.g., the length. Moreover, we manually detect issues whose description contains a null pointer exception, as these are strong indicators that issues are bugs. Results: Our approach performs best overall, but not significantly different from an approach from the literature based on the fastText classifier from Facebook AI Research. The small improvements in prediction performance are due to structural information about the issues we used. We found that using information about the content of issues in form of null pointer exceptions is not useful. We demonstrate the usefulness of issue type prediction through the example of labelling bugfixing commits. Conclusions: Issue type prediction can be a useful tool if the use case allows either for a certain amount of missed bug reports or the prediction of too many issues as bug is acceptable.