论文标题
在线图匹配问题具有最差的重新分配预算
Online Graph Matching Problems with a Worst-Case Reassignment Budget
论文作者
论文摘要
在与重新分配问题的在线双方匹配中,最初只给出了两部分图的顶点集的一侧;另一侧的顶点及其事件边缘呈现给算法。需要该算法才能在当前图中保持匹配,在该图中,该算法通过重新分配顶点来修改每个顶点到达后的匹配。 Bernstein,Holm和Rotenberg表明,在线算法可以通过每次到达进行摊销$ O(\ log^2 N)$重新分配来维持最大基数的匹配。 在本文中,我们建议考虑一个普遍的问题,即在文献中的各种模型下,要求未损坏的硬预算$ k $在重新分配数量上如何影响算法的性能。 我们表明,一种简单的,广泛使用的算法是所有这些模型的最有可能的确定性算法。对于未加权的最大信号问题,该算法是$(1- \ frac {2} {k+2})$ - 竞争算法,这对于确定性算法都是顶点的到达和边缘到达的最佳方法。应用于负载平衡问题,这会产生双分离器在线算法。对于加权问题,传统上是假设三角形不平等的,我们表明,重新分配的力量使我们能够提高此假设,并且算法变成了$ \ frac {1} {2} $ - 竞争性算法,$ k = 4 $,在$ \ freac上,不需要$ \ freac {1} $ a and and and and and and and and and and。我们表明,这也是一种最好的确定性算法。
In the online bipartite matching with reassignments problem, an algorithm is initially given only one side of the vertex set of a bipartite graph; the vertices on the other side are revealed to the algorithm one by one, along with its incident edges. The algorithm is required to maintain a matching in the current graph, where the algorithm revises the matching after each vertex arrival by reassigning vertices. Bernstein, Holm, and Rotenberg showed that an online algorithm can maintain a matching of maximum cardinality by performing amortized $O(\log^2 n)$ reassignments per arrival. In this paper, we propose to consider the general question of how requiring a non-amortized hard budget $k$ on the number of reassignments affects the algorithms' performances, under various models from the literature. We show that a simple, widely-used algorithm is a best-possible deterministic algorithm for all these models. For the unweighted maximum-cardinality problem, the algorithm is a $(1-\frac{2}{k+2})$-competitive algorithm, which is the best possible for a deterministic algorithm both under vertex arrivals and edge arrivals. Applied to the load balancing problem, this yields a bifactor online algorithm. For the weighted problem, which is traditionally studied assuming the triangle inequality, we show that the power of reassignment allows us to lift this assumption and the algorithm becomes a $\frac{1}{2}$-competitive algorithm for $k=4$, improving upon the $\frac{1}{3}$ of the previous algorithm without reassignments. We show that this also is a best-possible deterministic algorithm.