论文标题
有限组功能代数的分级扭曲的一些同构结果
Some isomorphism results for graded twistings of function algebras on finite groups
论文作者
论文摘要
我们为HOPF代数提供了同构结果,这些结果是通过循环基团的共同体作用作为有限组的功能代数的分级扭曲而获得的。更普遍地,我们还考虑了将有限维的HOPF代数拟合到Abelian Cocentral扩展中的同构问题。我们将分类结果应用于许多具体的示例,这些示例涉及有限领域,交替组和二面体组的特殊线性群体。
We provide isomorphism results for Hopf algebras that are obtained as graded twistings of function algebras on finite groups by cocentral actions of cyclic groups. More generally , we also consider the isomorphism problem for finite-dimensional Hopf algebras fitting into abelian cocentral extensions. We apply our classification results to a number of concrete examples involving special linear groups over finite fields, alternating groups and dihedral groups.