论文标题
嵌入式集体知识的多层次上下文门控,用于医学图像细分
Multi-level Context Gating of Embedded Collective Knowledge for Medical Image Segmentation
论文作者
论文摘要
由于在不同情况下解剖学的差异很大,医疗图像分割非常具有挑战性。深度学习框架的最新进展在图像分段中表现得更快,更准确。在现有网络中,U-NET已成功应用于医疗图像细分。在本文中,我们提出了用于医学图像分割的U-NET的扩展,其中我们将U-NET,挤压和激发(SE)块(SE)块,双向ConvlstM(BConvlSTM)和密集卷积的机制具有完全优势。 (i)我们通过利用U-NET内的SE模块来改善分割性能,对模型复杂性产生较小的影响。这些障碍物通过利用特征图的全局信息嵌入的全局信息来适应渠道特征响应。 (ii)为了加强特征传播并鼓励功能重复使用,我们在编码路径的最后卷积层中使用密集连接的卷积。 (iii)我们在U-NET的跳过连接中而不是简单的串联,而是在网络的所有级别中使用BCONVLSTM来组合从相应的编码路径中提取的特征映射和以前的解码上倾斜层以非线性方式。提出的模型在六个数据集驱动器,ISIC 2017和2018,肺部分割,$ ph^2 $和细胞核分段中进行了评估,可实现最新的性能。
Medical image segmentation has been very challenging due to the large variation of anatomy across different cases. Recent advances in deep learning frameworks have exhibited faster and more accurate performance in image segmentation. Among the existing networks, U-Net has been successfully applied on medical image segmentation. In this paper, we propose an extension of U-Net for medical image segmentation, in which we take full advantages of U-Net, Squeeze and Excitation (SE) block, bi-directional ConvLSTM (BConvLSTM), and the mechanism of dense convolutions. (I) We improve the segmentation performance by utilizing SE modules within the U-Net, with a minor effect on model complexity. These blocks adaptively recalibrate the channel-wise feature responses by utilizing a self-gating mechanism of the global information embedding of the feature maps. (II) To strengthen feature propagation and encourage feature reuse, we use densely connected convolutions in the last convolutional layer of the encoding path. (III) Instead of a simple concatenation in the skip connection of U-Net, we employ BConvLSTM in all levels of the network to combine the feature maps extracted from the corresponding encoding path and the previous decoding up-convolutional layer in a non-linear way. The proposed model is evaluated on six datasets DRIVE, ISIC 2017 and 2018, lung segmentation, $PH^2$, and cell nuclei segmentation, achieving state-of-the-art performance.