论文标题
多个短期行星系统中的动态不稳定性可能是由世俗混乱驱动的:开普勒102的案例研究
Dynamical instabilities in systems of multiple short-period planets are likely driven by secular chaos: a case study of Kepler-102
论文作者
论文摘要
我们研究了高多重开普勒和K2行星系统的动力稳定性。我们的数值模拟在$ \ sim20 \%$中找到不稳定性,以各种时间标准(最高$ 5 \ times10^9 $ orbits)和出乎意料的广泛的初始动力学间距。为了确定多星际系统中长期不稳定性的触发因素,我们详细研究了五个球衣开普勒102系统。尽管有几个接近谐振的时期比,但我们发现,平均运动共振不太可能直接导致该系统中合理的行星质量引起不稳定。取而代之的是,我们发现有力的证据表明,通过世俗的混乱,角动量赤字缓慢地转移了慢速的内向转移,这激发了最内向行星Kepler-102 B的偏心率,最终导致了$ \ sim80 \%\%kepler-102仿真的行星 - sim80 \%$。 Kepler-102 B可能具有质量$> \ sim0.1m _ {\ oplus} $,因此,大量密度超过大约半地球的密度,以避免动态的不稳定性。为了研究世俗混乱在我们更广泛的模拟集中的作用,我们以从短整合的功率谱($ \ sim5 \ times10^6 $ orbits)计算出的每个行星系统的AMD进化表征。我们发现,小光谱分数($ \ lysSIM0.01 $)与长时间尺度上的动力稳定性密切相关($ 5 \ times10^9 $ orbits),并且不稳定的中值随着光谱分数的增加而减少。我们的结果支持以下假设:世俗混乱是许多非谐振多型系统系统中不稳定性的驱动力,并且还证明了光谱分析方法是一种有效的数值工具,可以从短期模拟中诊断出长期稳定性(IN)稳定性。
We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in $\sim20\%$ of the cases on a wide range of timescales (up to $5\times10^9$ orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multi-planet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in $\sim80\%$ of Kepler-102 simulations. Kepler-102 b likely has a mass $>\sim0.1M_{\oplus}$, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a "spectral fraction" calculated from the power spectrum of short integrations ($\sim5\times10^6$ orbits). We find that small spectral fractions ($\lesssim0.01$) are strongly associated with dynamical stability on long timescales ($5\times10^9$ orbits) and that the median time to instability decreases with increasing spectral fraction. Our results support the hypothesis that secular chaos is the driver of instabilities in many non-resonant multi-planet systems, and also demonstrate that the spectral analysis method is an efficient numerical tool to diagnose long term (in)stability of multi-planet systems from short simulations.