论文标题
非概念和非平滑分数程序的外推近端亚级别算法
Extrapolated Proximal Subgradient Algorithms for Nonconvex and Nonsmooth Fractional Programs
论文作者
论文摘要
在本文中,我们考虑了一系列非平滑和非凸的分数程序,其中分子可以写成连续可区分的凸函数的总和,其梯度是Lipschitz连续的,并且适当的半连续(可能是非Conconvex)函数,而eNaMinator则在约束设置的范围内弱凸。该模型问题包括最近研究的综合优化问题,其中包括许多重要的现代分数优化问题,这些问题是由不同领域(例如最近提出的量表不变稀疏信号重建问题)在信号处理中引起的。我们提出了一种具有外推的近端亚级别算法,用于求解此优化模型,并表明该算法生成的迭代序列是有界的,其任何限制点都是模型问题的固定点。我们的外推参数的选择是灵活的,包括在重新开始的快速迭代缩小阈值算法(FISTA)中采用的流行外推参数。通过提供下降方法的统一分析框架,我们在假设合适的优点函数满足Kurdyka-见库Jasiewicz(KL)属性的假设下建立了完整序列的收敛性。特别是,我们的算法在球形约束上表现出对规模不变信号重建问题和瑞利商问题的线性收敛。如果分母是有限的许多连续较弱的弱凸功能的最大值的情况,我们还提出了增强的外推近端亚级别算法,并保证收敛到模型问题的固定点更强的概念。最后,我们通过分析和模拟数值示例说明了所提出的方法。
In this paper, we consider a broad class of nonsmooth and nonconvex fractional programs, where the numerator can be written as the sum of a continuously differentiable convex function whose gradient is Lipschitz continuous and a proper lower semicontinuous (possibly nonconvex) function, and the denominator is weakly convex over the constraint set. This model problem includes the composite optimization problems studied extensively lately, and encompasses many important modern fractional optimization problems arising from diverse areas such as the recently proposed scale invariant sparse signal reconstruction problem in signal processing. We propose a proximal subgradient algorithm with extrapolations for solving this optimization model and show that the iterated sequence generated by the algorithm is bounded and any of its limit points is a stationary point of the model problem. The choice of our extrapolation parameter is flexible and includes the popular extrapolation parameter adopted in the restarted Fast Iterative Shrinking-Threshold Algorithm (FISTA). By providing a unified analysis framework of descent methods, we establish the convergence of the full sequence under the assumption that a suitable merit function satisfies the Kurdyka--Łojasiewicz (KL) property. In particular, our algorithm exhibits linear convergence for the scale invariant sparse signal reconstruction problem and the Rayleigh quotient problem over spherical constraint. In the case where the denominator is the maximum of finitely many continuously differentiable weakly convex functions, we also propose an enhanced extrapolated proximal subgradient algorithm with guaranteed convergence to a stronger notion of stationary points of the model problem. Finally, we illustrate the proposed methods by both analytical and simulated numerical examples.