论文标题
SU的Lorentz不变量子同时(2)X SU(2)自旋 - 态状态
Lorentz Invariant Quantum Concurrence for SU(2) x SU(2) spin-parity states
论文作者
论文摘要
$ su(2)\ otimes su(2)$ spin-parity状态的量子并发显示在$(1,3)$ lorentz boost和$ o(3)$旋转时,当密度矩阵与协方差的较元素的概率分布构造时,dirac质量分布的dirac质量分布。对于量子纯度和单位密度矩阵算子的痕迹,获得了类似的不变特性。报告的不变功能 - 在$ su(2)\ otimes su(2)$的范围内获得,仅与$ sl(2,\ m rathbb {c})所包含的不相等表示之一相对应仅有关自旋极化的信息,也只有关内在奇偶校验的相关信息。这种协变框架用于计算与磁场耦合的旋转粒子的洛伦兹不变的自旋式纠缠,通过该旋转粒子的扩展到更通用的庞加莱类相互作用类别的扩展是直接描绘的。
The quantum concurrence of $SU(2) \otimes SU(2)$ spin-parity states is shown to be invariant under $SO(1,3)$ Lorentz boosts and $O(3)$ rotations when the density matrices are constructed in consonance with the covariant probabilistic distribution of Dirac massive particles. Similar invariance properties are obtained for the quantum purity and for the trace of unipotent density matrix operators. The reported invariance features -- obtained in the scope of the $SU(2) \otimes SU(2)$ corresponding to just one of the inequivalent representations enclosed by the $SL(2,\mathbb{C})\otimes SL(2,\mathbb{C})$ symmetry -- set a more universal and kinematical-independent meaning for the quantum entanglement encoded in systems containing not only information about spin polarization but also the correlated information about intrinsic parity. Such a covariant framework is used for computing the Lorentz invariant spin-parity entanglement of spinorial particles coupled to a magnetic field, through which the extensions to more general Poincaré classes of spinor interactions are straightforwardly depicted.