论文标题
量子增强的速度测定用多普勒囊的原子蒸气
Quantum-Enhanced Velocimetry with Doppler-Broadened Atomic Vapor
论文作者
论文摘要
传统上,测量原子合奏的质量中心(C.M.)速度依赖于测量合奏中单个原子的吸收光谱的多普勒移位。确定C.M.时,绘制集合的速度分布是必不可少的使用此技术的速度。结果,高度敏感的测量需要制备具有狭窄多普勒宽度的合奏。在这里,我们使用通过移动房间温度原子蒸气单元格的光的光色测量来确定单个镜头的速度,短期灵敏度为5.5 $μ$ m s $ s $^{ - 1} $ hz $ hz $^{ - 1/2} $。通过在电磁诱导的透明度条件下通过辅助转变产生量子干扰,从而增强了培养基的分散体。与单个原子的测量相反,该方法基于原子的集体运动,并且可以感觉到C.M.合奏的速度不知道其速度分布。我们的结果提高了先前的测量值3个数量级,可用于设计基于热原子的紧凑型运动传感器。
Traditionally, measuring the center-of-mass (c.m.) velocity of an atomic ensemble relies on measuring the Doppler shift of the absorption spectrum of single atoms in the ensemble. Mapping out the velocity distribution of the ensemble is indispensable when determining the c.m. velocity using this technique. As a result, highly sensitive measurements require preparation of an ensemble with a narrow Doppler width. Here, we use a dispersive measurement of light passing through a moving room temperature atomic vapor cell to determine the velocity of the cell in a single shot with a short-term sensitivity of 5.5 $μ$m s$^{-1}$ Hz$^{-1/2}$. The dispersion of the medium is enhanced by creating quantum interference through an auxiliary transition for the probe light under electromagnetically induced transparency condition. In contrast to measurement of single atoms, this method is based on the collective motion of atoms and can sense the c.m. velocity of an ensemble without knowing its velocity distribution. Our results improve the previous measurements by 3 orders of magnitude and can be used to design a compact motional sensor based on thermal atoms.