论文标题

在复杂域上学习卷积稀疏编码,以进行干涉阶段恢复

Learning Convolutional Sparse Coding on Complex Domain for Interferometric Phase Restoration

论文作者

Kang, Jian, Hong, Danfeng, Liu, Jialin, Baier, Gerald, Yokoya, Naoto, Demir, Begüm

论文摘要

几十年来研究了干涉期恢复,并且大多数最先进的方法已经实现了有希望的INS恢复性能。这些方法通常遵循旨在规避楼梯效应并保留相位变化细节的非局部过滤处理链。在本文中,我们提出了一种替代方法来进行INS恢复,即复杂的卷积稀疏编码(COMCSC)及其梯度正规化版本。据我们所知,这是我们第一次以横向扭转方式解决Insar阶段恢复问题。所提出的方法不仅可以抑制干涉相位噪声,还可以避免楼梯效应并保留细节。此外,它们为干涉阶段提供了基本相分量的见解。来自Terrasar-X条带和Sentinel-1干涉范围宽宽模式的合成和中等分辨率数据集的实验结果表明,我们的方法的表现优于这些先前基于非局部Insar Insar Insar滤波器的先前先前方法,尤其是STATE-THART方法:INSAR-BM3D。本文的源代码将公开用于社区内部可再现的研究。

Interferometric phase restoration has been investigated for decades and most of the state-of-the-art methods have achieved promising performances for InSAR phase restoration. These methods generally follow the nonlocal filtering processing chain aiming at circumventing the staircase effect and preserving the details of phase variations. In this paper, we propose an alternative approach for InSAR phase restoration, i.e. Complex Convolutional Sparse Coding (ComCSC) and its gradient regularized version. To our best knowledge, this is the first time that we solve the InSAR phase restoration problem in a deconvolutional fashion. The proposed methods can not only suppress interferometric phase noise, but also avoid the staircase effect and preserve the details. Furthermore, they provide an insight of the elementary phase components for the interferometric phases. The experimental results on synthetic and realistic high- and medium-resolution datasets from TerraSAR-X StripMap and Sentinel-1 interferometric wide swath mode, respectively, show that our method outperforms those previous state-of-the-art methods based on nonlocal InSAR filters, particularly the state-of-the-art method: InSAR-BM3D. The source code of this paper will be made publicly available for reproducible research inside the community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源