论文标题

用于定量相成像的深相变速器

Deep Phase Shifter for Quantitative Phase Imaging

论文作者

Zhang, Qinnan, Lu, Shengyu, Li, Jiaosheng, Li, Wenjie, Li, Dong, Lu, Xiaoxu, Zhong, Liyun, Tian, Jindong

论文摘要

仅单个强度全息干涉图可以记录光场的完整幅度和相位信息。但是,当前的数字全息技术无法从单个干涉图中恢复无损相信息。在本文中,我们为全场定量阶段成像技术提供了一种全新的方法。我们证明,深度学习可用于替代权威相变,并且定量相成像可以从在线全息图中的单个干涉图中获得定量相。报道了一个深相转移网络(DPS-NET),可以通过模拟培训数据对其进行训练。训练有素的DPS-NET可用于生成多个干涉图,并从单个干涉图作为人工智能相变的任意相移。验证了生成任意相移的能力和准确性,并通过实验干涉图验证了所提出方法的性能。结果表明,所提出的方法可以为动态定量相测量技术提供具有高素质的完整数字相变。

A single intensity-only holographic interferogram can records the full amplitude and phase information of optical field. However, current digital holography technologies cannot recover the lossless phase information from a single interferogram. In this paper, we provide an entirely new approach for the full-field quantitative phase imaging technology. We demonstrate that deep learning can be used to replace the entitative phase shifter, and quantitative phase imaging can obtain quantitative phase from a single interferogram in in-line holography. A deep-phase-shift network (DPS-net) is reported, which can be trained with simulation training data. The trained DPS-net can be used to generate multiple interferograms with arbitrary phase shift from a single interferogram as an artificial intelligence phase shifter. The ability and the accuracy of generating arbitrary phase shifts are verified, and the performance of the proposed method is also verified by the experimental interferogram. The results demonstrate that the proposed method can provide a full digital phase shifter with high-accuracy for the technology of dynamic quantitative phase measurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源