论文标题
在homma-kim猜想中,用于非发音表面
On a Homma-Kim conjecture for nonsingular hypersurfaces
论文作者
论文摘要
令$ x^n $为射影空间中的$ d \ geq 2 $的非词性超出表面。我们证明了homma-kim的猜想在上限上,大约是$ \ mathbb {f} _q $ - $ x^n $的$ x^n $ for $ n = 3 $,以及对于任何奇数整数$ n \ geq 5 $和$ d \ d \ d \ leq q $。
Let $X^n$ be a nonsingular hypersurface of degree $d\geq 2$ in the projective space $\mathbb{P}^{n+1}$ defined over a finite field $\mathbb{F}_q$ of $q$ elements. We prove a Homma-Kim conjecture on a upper bound about the number of $\mathbb{F}_q$-points of $X^n$ for $n=3$, and for any odd integer $n\geq 5$ and $d\leq q$.