论文标题

使用U-NET模型进行土地覆盖分类的卫星图像进行分割

Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification

论文作者

Ulmas, Priit, Liiv, Innar

论文摘要

本文的重点是使用带有修改的U-NET结构的卷积机器学习模型,以创建基于卫星图像的土地覆盖分类映射。该研究的目的是训练和测试卷积模型以自动土地覆盖映射,并评估其在提高土地覆盖映射准确性和变更检测方面的可用性。为了解决这些任务,作者准备了一个数据集和训练有素的机器学习模型,用于从卫星图像中进行土地覆盖分类和语义分割。对三个不同的土地分类水平进行了分析。 Bigearthnet卫星图像档案被选为研究作为两个主要数据集之一。这部小说和最新数据集于2019年发布,包括来自2017年和2018年10个欧洲国家的Sentinel-2卫星照片。作为第二个数据集,作者组成了一个原始集,其中包含Sentinel-2图像和爱沙尼亚的Corine Land Cover Map。开发的分类模型显示了具有43个可能的图像标签的多类土地覆盖分类上的高总F \ TextSubscript {1}得分为0.749。该模型还突出显示了BigeArthnet数据集中的嘈杂数据,其中图像似乎具有错误的标签。分割模型提供了一种基于Sentinel-2卫星图像生成自动土地覆盖映射的解决方案,并显示了诸如森林,内陆水域和耕地之类的土地覆盖类别的高IOU得分。这些模型显示出提高现有土地分类图的准确性和土地覆盖变化检测的能力。

The focus of this paper is using a convolutional machine learning model with a modified U-Net structure for creating land cover classification mapping based on satellite imagery. The aim of the research is to train and test convolutional models for automatic land cover mapping and to assess their usability in increasing land cover mapping accuracy and change detection. To solve these tasks, authors prepared a dataset and trained machine learning models for land cover classification and semantic segmentation from satellite images. The results were analysed on three different land classification levels. BigEarthNet satellite image archive was selected for the research as one of two main datasets. This novel and recent dataset was published in 2019 and includes Sentinel-2 satellite photos from 10 European countries made in 2017 and 2018. As a second dataset the authors composed an original set containing a Sentinel-2 image and a CORINE land cover map of Estonia. The developed classification model shows a high overall F\textsubscript{1} score of 0.749 on multiclass land cover classification with 43 possible image labels. The model also highlights noisy data in the BigEarthNet dataset, where images seem to have incorrect labels. The segmentation models offer a solution for generating automatic land cover mappings based on Sentinel-2 satellite images and show a high IoU score for land cover classes such as forests, inland waters and arable land. The models show a capability of increasing the accuracy of existing land classification maps and in land cover change detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源