论文标题
芯片尺度振荡模式在热力学极限附近的光学惯性传感器
A chip-scale oscillation-mode optomechanical inertial sensor near the thermodynamical limits
论文作者
论文摘要
高精度的惯性感应和重力传感是导航,石油勘探和地震预测的关键。与使用压电或电子电容读数技术的先前加速度计相反,光学读数可提供狭窄的线宽高敏性激光检测以及在热力学限制附近的低噪声谐振剂光学机械转导。在这里,以100 Hz的收购速率和50.9 micro-G偏置不稳定性,适用于消费者和工业级应用,例如惯性导航,倾斜,平台稳定性稳定,和磨损的设备运动,可证明具有8.2micro-g/hz^1/2随机步行(VRW)的光学惯性传感器。插槽光子晶体腔被驱动到光学机电持续振荡中,提供了光学驱动转导的射频读数,并具有增强的625 microg/hz灵敏度。由于强烈的光学机械传输,测量了光学机制延伸的振荡移位,而不是光学传输变化,在前振荡模式检测中提供了220倍的VRW增强。在理论的支持下,该惯性传感器在较小整合时间的热力学极限上高2.56倍,在固态室温读取体系结构中具有43-DB动态范围。
High-precision inertial sensing and gravity sensing are key in navigation, oil exploration, and earthquake prediction. In contrast to prior accelerometers using piezoelectric or electronic capacitance readout techniques, optical readout provides narrow-linewidth high-sensitivity laser detection along with low-noise resonant optomechanical transduction near the thermodynamical limits. Here an optomechanical inertial sensor with 8.2micro-g/Hz^1/2 velocity random walk (VRW) at acquisition rate of 100 Hz and 50.9 micro-g bias instability is demonstrated, suitable for consumer and industrial grade applications, e.g., inertial navigation, inclination sensing, platform stabilization, and/or wearable device motion detection. Driven into optomechanical sustained-oscillation, the slot photonic crystal cavity provides radio-frequency readout of the optically-driven transduction with enhanced 625 microg/Hz sensitivity. Measuring the optomechanically-stiffened oscillation shift, instead of the optical transmission shift, provides a 220x VRW enhancement over pre-oscillation mode detection due to the strong optomechanical transduction. Supported by theory, this inertial sensor operates 2.56x above the thermodynamical limit at small integration times, with 43-dB dynamic range, in a solid-state room-temperature readout architecture.