论文标题

在天空中学习:无人机的有效3D放置

Learning in the Sky: An Efficient 3D Placement of UAVs

论文作者

Arani, Atefeh Hajijamali, Azari, M. Mahdi, Melek, William, Safavi-Naeini, Safieddin

论文摘要

无人驾驶汽车(UAV)的部署,因为空中基站可以提供快速,灵活的解决方案,以满足不同的交通需求。为了充分利用无人机的部署,其有效的放置非常重要,并且需要智能适应环境的变化。在本文中,我们提出了一种基于学习的机制,用于三维部署无人机,以帮助下行链路中的地面蜂窝网络。该问题以满意度形式的无人机之间的非合作性游戏建模。为了解决游戏,我们使用了低复杂性算法,其中不满意的无人机根据学习算法更新其位置。仿真结果表明,与优化的基线算法相比,所提出的无人机放置算法分别在吞吐量和丢弃用户的数量方面产生的性能分别可达到约52%和74%。

Deployment of unmanned aerial vehicles (UAVs) as aerial base stations can deliver a fast and flexible solution for serving varying traffic demand. In order to adequately benefit of UAVs deployment, their efficient placement is of utmost importance, and requires to intelligently adapt to the environment changes. In this paper, we propose a learning-based mechanism for the three-dimensional deployment of UAVs assisting terrestrial cellular networks in the downlink. The problem is modeled as a non-cooperative game among UAVs in satisfaction form. To solve the game, we utilize a low complexity algorithm, in which unsatisfied UAVs update their locations based on a learning algorithm. Simulation results reveal that the proposed UAV placement algorithm yields significant performance gains up to about 52% and 74% in terms of throughput and the number of dropped users, respectively, compared to an optimized baseline algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源