论文标题
贝叶斯系统ID:参数,模型和测量不确定性的最佳管理
Bayesian System ID: Optimal management of parameter, model, and measurement uncertainty
论文作者
论文摘要
我们评估了系统识别(ID)的概率表述对稀疏,嘈杂和间接数据的鲁棒性。具体而言,我们将学习问题的贝叶斯后部得出的未来系统行为的估计值与系统ID中使用的几种基于最小二乘的优化目标进行了比较。我们的比较表明,与传统方法的目标函数表面相比,对数后验的几何特性提高了几何特性,这些方法包括差异约束的最小二乘和最小二乘的重建,例如动态模式分解(DMD)。这些属性使它既对新数据更敏感,又不会受到多个最小值的影响 - 总体上产生了一种更健壮的方法。我们的理论结果表明,最小二乘和正则最小二乘方法,例如动态模式分解和非线性动力学的稀疏鉴定(sindy)可以通过假设无噪声测量来从概率公式中得出。我们还分析了基于高斯滤波器的近似边缘马尔可夫链蒙特卡洛方案的计算复杂性,该方案用于获得线性和非线性问题的贝叶斯后验。然后,我们从经验上证明,获得参数动力学的边际后部并通过提取最佳估计量(例如平均值,中位数,模式)来进行预测,从而在上述方法上会提高数量级。我们将这种表现归因于以下事实:贝叶斯方法捕获参数,模型和测量不确定性,而其他方法通常忽略了至少一种类型的不确定性。
We evaluate the robustness of a probabilistic formulation of system identification (ID) to sparse, noisy, and indirect data. Specifically, we compare estimators of future system behavior derived from the Bayesian posterior of a learning problem to several commonly used least squares-based optimization objectives used in system ID. Our comparisons indicate that the log posterior has improved geometric properties compared with the objective function surfaces of traditional methods that include differentially constrained least squares and least squares reconstructions of discrete time steppers like dynamic mode decomposition (DMD). These properties allow it to be both more sensitive to new data and less affected by multiple minima --- overall yielding a more robust approach. Our theoretical results indicate that least squares and regularized least squares methods like dynamic mode decomposition and sparse identification of nonlinear dynamics (SINDy) can be derived from the probabilistic formulation by assuming noiseless measurements. We also analyze the computational complexity of a Gaussian filter-based approximate marginal Markov Chain Monte Carlo scheme that we use to obtain the Bayesian posterior for both linear and nonlinear problems. We then empirically demonstrate that obtaining the marginal posterior of the parameter dynamics and making predictions by extracting optimal estimators (e.g., mean, median, mode) yields orders of magnitude improvement over the aforementioned approaches. We attribute this performance to the fact that the Bayesian approach captures parameter, model, and measurement uncertainties, whereas the other methods typically neglect at least one type of uncertainty.