论文标题

三维亚班级阵列中的延伸轻型运输

Subdiffusive light transport in three-dimensional subrandom arrays

论文作者

Sgrignuoli, Fabrizio, Negro, Luca Dal

论文摘要

我们研究了根据亚兰德序列产生的新型三维散射系统中的光传输,并在金属 - 绝缘子转移的临界点上显示了无序系统中波传输的典型行为,但在较大的参数中。具体而言,我们使用绿色的基质光谱理论解决了基于Halton,sobol和随机拉丁语拉丁杂志序列的绿色基质光谱理论的电磁多重散射问题。通过研究不同散射密度的电磁谐振的无数数量和水平间距统计,我们证明了确定性霍尔顿和Sobol结构中的光传输表现出以二极极散射剂跨二极管散射范围的水平间距统计量的逆功率定律表现出的多效率行为。另一方面,在随机拉丁杂志阵列中不存在这种情况,其行为类似于统一随机介质中的标准扩散。我们的发现建立了次扩散与亚助理上的大道秩序之间的联系,并为在宽光谱范围内设计具有多重特性的三维结构提供了新的策略。

We investigate light transport in novel three-dimensional scattering systems generated according to subrandom sequences and demonstrate subdiffusive behavior typical of wave transport in disordered systems at the critical point for metal-insulator-transitions but in a wider range of parameters. Specifically, we solve the electromagnetic multiple scattering problem using the Green's matrix spectral theory for aperiodic systems based on Halton, Sobol, and stochastic Latin-Hypercube sequences. By studying the Thouless number and the level spacing statistics of the electromagnetic resonances at different scattering density we demonstrate that light transport in deterministic Halton and Sobol structures exhibit multifractal behavior characterized by inverse power law scaling of level spacing statistics across a wide range of densities of dipolar scatterers. On the other hand, this scenario is absent in the stochastic Latin-Hypercube array, whose behavior resembles instead standard diffusion in uniform random media. Our findings establish a connection between subdiffusion and subrandom aperiodic order and provide a novel strategy to design three-dimensional structures with multifractal properties over a broad spectral range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源