论文标题
自适应贝叶斯量子估计的神经网络启发式
Neural-Network Heuristics for Adaptive Bayesian Quantum Estimation
论文作者
论文摘要
量子计量学承诺史无前例的测量精度,但实际上,资源的可用性有限,例如探针数量,它们的相干时间或非经典量子状态。自适应实验设计,适应性贝叶斯进行参数估计的方法可以有效利用资源。为了实践成功,贝叶斯更新和自适应实验设计的快速数值解决方案至关重要。在这里,我们表明,可以使用进化策略和强化学习的结合来训练神经网络,从而成为快速而强大的实验设计启发式方法。神经网络启发式方法显示出在技术上重要的频率估计频率估计量的量子量的示例的启发式方法。我们创建神经网络启发式方法的方法非常笼统,并补充了贝叶斯更新的经过精心研究的顺序蒙特卡洛方法,以形成自适应贝叶斯量子估计的完整框架。
Quantum metrology promises unprecedented measurement precision but suffers in practice from the limited availability of resources such as the number of probes, their coherence time, or non-classical quantum states. The adaptive Bayesian approach to parameter estimation allows for an efficient use of resources thanks to adaptive experiment design. For its practical success fast numerical solutions for the Bayesian update and the adaptive experiment design are crucial. Here we show that neural networks can be trained to become fast and strong experiment-design heuristics using a combination of an evolutionary strategy and reinforcement learning. Neural-network heuristics are shown to outperform established heuristics for the technologically important example of frequency estimation of a qubit that suffers from dephasing. Our method of creating neural-network heuristics is very general and complements the well-studied sequential Monte-Carlo method for Bayesian updates to form a complete framework for adaptive Bayesian quantum estimation.