论文标题

通过Martingale Transforms的乘数定理

Multiplier theorems via martingale transforms

论文作者

Bañuelos, Rodrigo, Baudoin, Fabrice, Chen, Li, Sire, Yannick

论文摘要

我们开发了一种新方法来证明各种几何设置中的乘数定理。主要思想是使用Martingale变换和Gundy-Varopoulos表示形式来通过合适的扩展程序定义的乘数。在此过程中,我们提供了具有独立利益的Stinga和Torrea对结果的概括的概率证明。我们在这里的方法还恢复了二阶Riesz的尖锐$ l^p $界限,而riesz通过限制参数进行了变换。

We develop a new approach to prove multiplier theorems in various geometric settings. The main idea is to use martingale transforms and a Gundy-Varopoulos representation for multipliers defined via a suitable extension procedure. Along the way, we provide a probabilistic proof of a generalization of a result by Stinga and Torrea, which is of independent interest. Our methods here also recover the sharp $L^p$ bounds for second order Riesz transforms by a liming argument.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源