论文标题

同源和同型混合霍奇多项式的局部比较

Local comparisons of homological and homotopical mixed Hodge polynomials

论文作者

Yokura, Shoji

论文摘要

对于简单连接的复杂代数$ x $,由混合杂货结构$(w _ {\ bullet},f^{\ bulter})$和$(\ tilde w _ {\ bullet},\ tilde f^{\ buttral})$ homology $ homology $ h $ h _ _ _} $π_ {*}(x)\ otimes \ mathbb q $,我们有以下混合混合hodge polyenmials $$ mh_x(t,u,u,v):= \ sum_ {k,p,p,q} \ perperatOrnAme {dim} {dim} gr^{w _ {\ bullet}} _ {p+q} h_k(x; \ mathbb c)\ bigr)t^{k} u^{ - p} v^{ - q},$ $ $ $ $ $ $ $ $ $ \ quad \ quad \ quad \ quad \,\,\,\,mh^^^^fim_x^π_x(mh^π_x(c) \ operatorName {dim} \ bigl(gr _ {\ tilde f^{\ bullet}}}}^{p} gr^{\ tilde w _ {\ bulter}} _ {p+q} v^{ - q},$$分别称为\ emph {同源混合霍奇多项式}和\ emph {同型混合混合霍奇多项式}。在本文中,我们讨论了有关这两个混合杂货多项式的一些不平等。

For a simply connected complex algebraic variey $X$, by the mixed Hodge structures $(W_{\bullet}, F^{\bullet})$ and $(\tilde W_{\bullet}, \tilde F^{\bullet})$ of the homology group $H_{*}(X;\mathbb Q)$ and the homotopy groups $π_{*}(X)\otimes \mathbb Q$ respectively, we have the following mixed Hodge polynomials $$MH_X(t,u,v):= \sum_{k,p,q} \operatorname{dim} \Bigl ( Gr_{F^{\bullet}}^{p} Gr^{W_{\bullet}}_{p+q} H_k (X;\mathbb C) \Bigr) t^{k} u^{-p} v^{-q},$$ $$\quad \, \, MH^π_X(t,u,v):= \sum_{k,p,q} \operatorname{dim} \Bigl (Gr_{\tilde F^{\bullet}}^{p} Gr^{\tilde W_{\bullet}}_{p+q} (π_k(X) \otimes \mathbb C) \Bigr ) t^ku^{-p} v^{-q},$$ which are respectively called \emph{the homological mixed Hodge polynomial} and \emph{the homotopical mixed Hodge polynomial}. In this paper we discuss some inequalities concerning these two mixed Hodge polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源