论文标题
离散Weyl通道的漏洞容量
Holevo Capacity of Discrete Weyl Channels
论文作者
论文摘要
孔隙容量是量子通道可以可靠传输经典信息而无需纠缠的最大速率。但是,计算任意量子通道的孔波能力是一个非平凡且计算昂贵的任务,因为它需要在所有可能的输入量子状态下进行数值优化。在本文中,我们考虑离散的Weyl通道(DWC),并将其对称性利用为DWC作为经典对称通道建模。我们使用简单的计算公式在DWC的孔值容量上表征了上限和上限。然后,我们提供了上限和下边界重合的足够和必要的条件。本文中的框架使我们能够表征大多数已知的特殊案例DWC的确切孔隙容量。
Holevo capacity is the maximum rate at which a quantum channel can reliably transmit classical information without entanglement. However, calculating the Holevo capacity of arbitrary quantum channels is a nontrivial and computationally expensive task since it requires the numerical optimization over all possible input quantum states. In this paper, we consider discrete Weyl channels (DWCs) and exploit their symmetry properties to model DWC as a classical symmetric channel. We characterize lower and upper bounds on the Holevo capacity of DWCs using simple computational formulae. Then, we provide a sufficient and necessary condition where the upper and lower bounds coincide. The framework in this paper enables us to characterize the exact Holevo capacity for most of the known special cases of DWCs.