论文标题

独立横向的平均度条件

An average degree condition for independent transversals

论文作者

Glock, Stefan, Sudakov, Benny

论文摘要

在1994年,Erdős,Gyárfás和üuczak提出了以下问题:给定的脱节顶点$ v_1,\ dots,\ dots,v_n $ size〜 $ k $,在任何一对$ v_i,v_j $之间,$ v_j $之间的一个优势,$ n $有多大的$ n $,使得有一个独立的横向横向横向跨性别?他们表明,最大$ n $最多是$(1+o(1))k^2 $,通过提供这些参数的明确结构,而没有独立的横向。他们还证明了一个较小的$ 2E $ factor。 在本文中,我们通过证明其上限结构最好解决这个问题:如果$ n \ le(1-o(1))k^2 $,总会有独立的横向。实际上,这个结果是一个非常特殊的情况,它是一个更通用的定理,它涉及“局部稀疏”的任意零件图中的独立横向,这意味着每对零件之间的最大程度相对较小。在这种情况下,Loh和Sudakov为存在独立横向的存在提供了全局\ emph {最大}度条件。我们表明,可以放松到\ emph {平均}度条件。 我们还可以使用新定理为更通用版本的Erdős-gyárfás-见uczak问题建立紧密的界限,并从1997年开始解决了Yuster的猜想。这利用了与Turán数量的完整两部分图形的联系,这可能引起了独立的关注。

In 1994, Erdős, Gyárfás and Łuczak posed the following problem: given disjoint vertex sets $V_1,\dots,V_n$ of size~$k$, with exactly one edge between any pair $V_i,V_j$, how large can $n$ be such that there will always be an independent transversal? They showed that the maximal $n$ is at most $(1+o(1))k^2$, by providing an explicit construction with these parameters and no independent transversal. They also proved a lower bound which is smaller by a $2e$-factor. In this paper, we solve this problem by showing that their upper bound construction is best possible: if $n\le (1-o(1))k^2$, there will always be an independent transversal. In fact, this result is a very special case of a much more general theorem which concerns independent transversals in arbitrary partite graphs that are `locally sparse', meaning that the maximum degree between each pair of parts is relatively small. In this setting, Loh and Sudakov provided a global \emph{maximum} degree condition for the existence of an independent transversal. We show that this can be relaxed to an \emph{average} degree condition. We can also use our new theorem to establish tight bounds for a more general version of the Erdős--Gyárfás--Łuczak problem and solve a conjecture of Yuster from 1997. This exploits a connection to the Turán numbers of complete bipartite graphs, which might be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源