论文标题
混沌同步熟悉神经元:Lyapunov功能与汉密尔顿功能
Chaotic Synchronization of memristive neurons: Lyapunov function versus Hamilton function
论文作者
论文摘要
我们通过更改外部谐波电流和磁力收益参数来研究这种改善的复活性神经元模型的动力学行为。该模型显示了丰富的动力学,包括周期性和混乱的尖峰和爆发,以及非常混乱的超爆炸,它比标准爆发活动具有更大的信息编码势。基于Krasovskii-Lyapunov稳定性理论,获得了改进模型的混沌同步的足够条件(在突触强度和磁力参数上)。基于Helmholtz的定理,还获得了相应误差动态系统的汉密尔顿功能。结果表明,该汉密尔顿函数沿轨迹的时间变化可以在确定同步歧管的渐近稳定性方面发挥lyapunov函数的时间变化的作用。数值计算表明,随着突触强度和磁性收益参数的变化,汉密尔顿函数的时间变化始终是非零的(即,仅当lyapunov函数的时间变化为正时,并且仅当零(或零时零时)的时间变化时,仅当lyapunov函数的时间变化也是Zero的Zero函数时,仅当lyapunov函数的时间变化时。因此,这清楚地铺平了一种确定同步歧管的渐近稳定性的替代方法,并且对于难以构建的Lyapunov函数但其汉密尔顿功能与动态误差系统相对应的系统尤其有用。
We study the dynamical behaviors of this improved memristive neuron model by changing external harmonic current and the magnetic gain parameters. The model shows rich dynamics including periodic and chaotic spiking and bursting, and remarkably, chaotic super-bursting, which has greater information encoding potentials than a standard bursting activity. Based on Krasovskii-Lyapunov stability theory, the sufficient conditions (on the synaptic strengths and magnetic gain parameters) for the chaotic synchronization of the improved model are obtained. Based on Helmholtz's theorem, the Hamilton function of the corresponding error dynamical system is also obtained. It is shown that the time variation of this Hamilton function along trajectories can play the role of the time variation of the Lyapunov function - in determining the asymptotic stability of the synchronization manifold. Numerical computations indicate that as the synaptic strengths and the magnetic gain parameters change, the time variation of the Hamilton function is always non-zero (i.e., a relatively large positive or negative value) only when the time variation of the Lyapunov function is positive, and zero (or vanishingly small) only when the time variation of the Lyapunov function is also zero. This clearly therefore paves an alternative way to determine the asymptotic stability of synchronization manifolds, and can be particularly useful for systems whose Lyapunov function is difficult to construct, but whose Hamilton function corresponding to the dynamic error system is easier to calculate.