论文标题

视觉关注的感知增强是任务依赖于自然主义环境

The perceptual boost of visual attention is task-dependent in naturalistic settings

论文作者

Smith, Freddie Bickford, Luo, Xiaoliang, Roads, Brett D., Love, Bradley C.

论文摘要

自上而下的注意力使人们可以专注于与任务相关的视觉信息。由此产生的感知是否可以提高任务依赖于自然主义环境?我们的目标是通过大规模的计算实验来回答这一点。首先,我们设计了一个视觉任务的集合,每个任务都包括从所选任务集(Imagenet类别的子集)分类的图像。任务的性质是确定任务集中包含哪些类别的。其次,在每个任务上,我们都会训练一个引起注意的神经网络,然后将其准确性与基线网络的准确性进行比较。我们表明,随着任务集难度的增加,注意力的感知提升更加强大,随着任务集大小的增加而弱弱,并且在任务集中的感知相似性越来越弱。

Top-down attention allows people to focus on task-relevant visual information. Is the resulting perceptual boost task-dependent in naturalistic settings? We aim to answer this with a large-scale computational experiment. First, we design a collection of visual tasks, each consisting of classifying images from a chosen task set (subset of ImageNet categories). The nature of a task is determined by which categories are included in the task set. Second, on each task we train an attention-augmented neural network and then compare its accuracy to that of a baseline network. We show that the perceptual boost of attention is stronger with increasing task-set difficulty, weaker with increasing task-set size and weaker with increasing perceptual similarity within a task set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源