论文标题
sip-segnet:基于眼周区域抑制的巩膜,虹膜和学生的联合语义分割和提取的深卷积编码器网络
SIP-SegNet: A Deep Convolutional Encoder-Decoder Network for Joint Semantic Segmentation and Extraction of Sclera, Iris and Pupil based on Periocular Region Suppression
论文作者
论文摘要
机器视觉领域的当前发展为在各种现实世界应用中部署多模式生物识别系统开辟了新的远景。这些系统能够应对容易受到欺骗,噪声,非大学性和阶级变化的局限性的局限性。另外,在这些识别系统中,优选使用各种生物特征性状的眼部特征。这样的系统具有很高的独特性,持久性和性能,而基于其他生物特征特征(指纹,语音等)的技术很容易被妥来说损害。这项工作提出了一个名为sip-segnet的新型深度学习框架,该框架在不受约束的场景中执行了眼部特征(巩膜,虹膜和学生)的联合语义分割,以更高的准确性。在这些情况下,获得的图像表现出Purkinje反射,镜面反射,眼睛凝视,远角镜头,低分辨率和各种遮挡,尤其是眼睑和睫毛。为了解决这些问题,SIP-SEGNET首先使用Deoising卷积神经网络(DNCNN)来降级原始图像,然后基于对比度有限的自适应直方图均衡(CLAHE),然后进行反射去除和图像增强。然后,我们提出的框架使用自适应阈值提取眼周信息,并采用模糊过滤技术来抑制此信息。最后,使用密集连接的完全卷积编码器网络来实现巩膜,虹膜和学生的语义分割。我们使用五个CASIA数据集根据各种评估指标来评估SIP-Segnet的性能。该仿真结果验证了所提出的SIP-SEGNET的最佳分割,平均F1得分为93.35、95.11和96.69,分别为Sclera,Iris和Pupil类。
The current developments in the field of machine vision have opened new vistas towards deploying multimodal biometric recognition systems in various real-world applications. These systems have the ability to deal with the limitations of unimodal biometric systems which are vulnerable to spoofing, noise, non-universality and intra-class variations. In addition, the ocular traits among various biometric traits are preferably used in these recognition systems. Such systems possess high distinctiveness, permanence, and performance while, technologies based on other biometric traits (fingerprints, voice etc.) can be easily compromised. This work presents a novel deep learning framework called SIP-SegNet, which performs the joint semantic segmentation of ocular traits (sclera, iris and pupil) in unconstrained scenarios with greater accuracy. The acquired images under these scenarios exhibit purkinje reflexes, specular reflections, eye gaze, off-angle shots, low resolution, and various occlusions particularly by eyelids and eyelashes. To address these issues, SIP-SegNet begins with denoising the pristine image using denoising convolutional neural network (DnCNN), followed by reflection removal and image enhancement based on contrast limited adaptive histogram equalization (CLAHE). Our proposed framework then extracts the periocular information using adaptive thresholding and employs the fuzzy filtering technique to suppress this information. Finally, the semantic segmentation of sclera, iris and pupil is achieved using the densely connected fully convolutional encoder-decoder network. We used five CASIA datasets to evaluate the performance of SIP-SegNet based on various evaluation metrics. The simulation results validate the optimal segmentation of the proposed SIP-SegNet, with the mean f1 scores of 93.35, 95.11 and 96.69 for the sclera, iris and pupil classes respectively.