论文标题
获得感情。使用软抓手和神经网络估算物理参数
Gaining a Sense of Touch. Physical Parameters Estimation using a Soft Gripper and Neural Networks
论文作者
论文摘要
软握把在操纵弹性物体时引起了极大的关注,在这种弹性物体的操作中,需要处理容易受到变形的柔软和非结构化对象。一个关键的问题是估算挤压对象的物理参数以调整操纵程序,这被认为是重大挑战。据作者所知,使用深度学习算法对使用机器人抓手直接相互作用的测量进行了深入学习算法,对物理参数估算的研究没有足够的研究。在我们的工作中,我们提出了一个可训练的系统,用于回归刚度系数,并使用物理模拟器环境提供了广泛的实验。此外,我们准备了在现实情况下工作的应用程序。我们的系统可以使用耶鲁大学的式软抓地力抓地力可靠地估算物体的刚度,该系统根据附着在其手指上的惯性测量单元(IMU)的读数。此外,在实验期间,我们准备了三个在挤压对象时收集的信号数据集 - 在模拟环境中创建了两个,一个由真实数据组成。
Soft grippers are gaining significant attention in the manipulation of elastic objects, where it is required to handle soft and unstructured objects which are vulnerable to deformations. A crucial problem is to estimate the physical parameters of a squeezed object to adjust the manipulation procedure, which is considered as a significant challenge. To the best of the authors' knowledge, there is not enough research on physical parameters estimation using deep learning algorithms on measurements from direct interaction with objects using robotic grippers. In our work, we proposed a trainable system for the regression of a stiffness coefficient and provided extensive experiments using the physics simulator environment. Moreover, we prepared the application that works in the real-world scenario. Our system can reliably estimate the stiffness of an object using the Yale OpenHand soft gripper based on readings from Inertial Measurement Units (IMUs) attached to its fingers. Additionally, during the experiments, we prepared three datasets of signals gathered while squeezing objects -- two created in the simulation environment and one composed of real data.