论文标题

卷积稀疏支持估计器网络(CSEN)从节能支持估计到学习辅助的压缩感

Convolutional Sparse Support Estimator Network (CSEN) From energy efficient support estimation to learning-aided Compressive Sensing

论文作者

Yamac, Mehmet, Ahishali, Mete, Kiranyaz, Serkan, Gabbouj, Moncef

论文摘要

稀疏信号的支持估计(SE)是指在稀疏表示中找到非零元素的位置指数。解决SE问题的大多数传统方法是基于贪婪方法或优化技术的迭代算法。实际上,他们中的绝大多数使用稀疏的信号恢复技术来获得支持集,而不是直接从密度的测量值(例如,压缩感知的测量值)直接映射非零位置。这项研究提出了一种从训练组中学习这种映射的新方法。为了实现这一目标,设计了卷积支持估计器网络(CSEN),每个网络都设计了紧凑的配置。提出的CSEN可以是以下方案的关键工具:(i)可以在任何移动和低功率边缘设备中应用实时和低成本支持估计,以进行异常定位,同时的面部识别等。(ii)CSEN的输出可以直接用作“先验信息”,从而改善了稀疏信号回收质量验收量的稀疏信号恢复Algorithms。基准数据集对基准数据集的结果表明,最新的性能水平可以通过拟议的方法显着降低计算复杂性来实现。

Support estimation (SE) of a sparse signal refers to finding the location indices of the non-zero elements in a sparse representation. Most of the traditional approaches dealing with SE problem are iterative algorithms based on greedy methods or optimization techniques. Indeed, a vast majority of them use sparse signal recovery techniques to obtain support sets instead of directly mapping the non-zero locations from denser measurements (e.g., Compressively Sensed Measurements). This study proposes a novel approach for learning such a mapping from a training set. To accomplish this objective, the Convolutional Support Estimator Networks (CSENs), each with a compact configuration, are designed. The proposed CSEN can be a crucial tool for the following scenarios: (i) Real-time and low-cost support estimation can be applied in any mobile and low-power edge device for anomaly localization, simultaneous face recognition, etc. (ii) CSEN's output can directly be used as "prior information" which improves the performance of sparse signal recovery algorithms. The results over the benchmark datasets show that state-of-the-art performance levels can be achieved by the proposed approach with a significantly reduced computational complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源