论文标题

AI中科学启发的解释的一般框架

A general framework for scientifically inspired explanations in AI

论文作者

Tuckey, David, Russo, Alessandra, Broda, Krysia

论文摘要

AI中的解释性正在引起计算机科学界的关注,以回应深度学习的越来越多的成功,以及为这种系统如何在生命中的应用中做出预测的重要需求。 AI中解释性的重点主要是试图通过探索输入数据和预测结果之间的关系或提取更简单的可解释模型来探索机器学习系统如何运作的见解。通过对哲学和社会科学的文献调查,作者强调了这些产生的解释和人为解释之间的巨大差异,并声称当前的AI解释没有考虑到人类互动的复杂性,以允许有效传递给非专家使用者的信息。在本文中,我们将科学解释结构的概念实例化为一个一般框架的理论基础,在该框架中,可以实现对AI系统的解释。该框架旨在提供工具来构建任何AI系统的“心理模型”,以便与用户的互动可以根据需求提供信息并更接近人制造的解释的性质。我们说明了如何通过两个截然不同的示例来利用此框架:人工神经网络和序言求解器,我们为这两个示例提供了可能的实现。

Explainability in AI is gaining attention in the computer science community in response to the increasing success of deep learning and the important need of justifying how such systems make predictions in life-critical applications. The focus of explainability in AI has predominantly been on trying to gain insights into how machine learning systems function by exploring relationships between input data and predicted outcomes or by extracting simpler interpretable models. Through literature surveys of philosophy and social science, authors have highlighted the sharp difference between these generated explanations and human-made explanations and claimed that current explanations in AI do not take into account the complexity of human interaction to allow for effective information passing to not-expert users. In this paper we instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented. This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations. We illustrate how we can utilize this framework through two very different examples: an artificial neural network and a Prolog solver and we provide a possible implementation for both examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源