论文标题

Werner和各向同性状态的分解

The Decompositions of Werner and Isotropic States

论文作者

Yang, Ma-Cheng, Li, Jun-Li, Qiao, Cong-Feng

论文摘要

可分离的Werner状态以及各向同性状态的分解是量子信息理论中众所周知的棘手问题,在这项工作中,我们在Bloch矢量代表中调查了它们,探索了希尔伯特领域中对称的信息完全完全的运算符值(SIC-POVM)。我们成功地从常规的单纯形成方面成功获得了任意$ n \ times n $ werner状态的分解。同时,发现各向同性状态的分解与通过部分换位与沃纳状态的分解有关。有趣的是,在大的$ n $限制中,虽然沃纳州是可分离的,要么是非纠缠的,但大多数各向同性状态往往是可辨的。

The decompositions of separable Werner state, and also isotropic state, are well-known tough issues in quantum information theory, in this work we investigate them in the Bloch vector representation, exploring the symmetric informationally complete positive operator-valued measure (SIC-POVM) in the Hilbert space. We successfully get the decomposition for arbitrary $N\times N$ Werner state in terms of regular simplexes. Meanwhile, the decomposition of isotropic state is found to be related to the decomposition of Werner state via partial transposition. It is interesting to note that in the large $N$ limit, while the Werner states are either separable or non-steerably entangled, most of the isotropic states tend to be steerable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源