论文标题

通过压缩传感的非共同带SAR干涉测量法

Non-Common Band SAR Interferometry via Compressive Sensing

论文作者

Yang, Huizhang, Chen, Chengzhi, Chen, Shengyao, Xi, Feng, Liu, Zhong

论文摘要

为了避免去相关,常规的合成孔径干涉仪(INSAR)要求干涉图像在适当的预处理后应具有共同的光谱带和相同的分辨率。对于高分辨率(HR)图像和低分辨率(LR)的图像,干涉图质量受到LR的限制,因为通常丢弃两个图像之间的非共同带(NCB)。在本文中,我们尝试建立一种通过利用NCB来提高干预质量的INS方法。为此,我们首先定义一个新的干涉图,该图具有与HR图像相同的分辨率。然后,我们将两个图像之间的干涉关系提出为压缩传感(CS)模型,该模型包含所提出的HR干涉图。在适当域中干涉图的稀疏性,我们将干涉图的形成建模为典型的稀疏恢复问题。由于相干雷达成像中的斑点效应,我们CS模型的传感矩阵本质上是随机的。从理论上讲,我们证明传感矩阵满足受限制的等轴测特性,因此可以保证干涉图恢复性能。此外,我们通过利用传感矩阵的计算有效结构来提供快速的干涉图形算法。数值实验表明,所提出的方法在减少相位噪声的意义上提供了更好的干涉图质量,并获得了相对于CB处理的外推干涉光谱。

To avoid decorrelation, conventional synthetic aperture radar interferometry (InSAR) requires that interferometric images should have a common spectral band and the same resolution after proper preprocessing. For a high-resolution (HR) image and a low-resolution (LR) one, the interferogram quality is limited by the LR one since the non-common band (NCB) between two images is usually discarded. In this article, we try to establish an InSAR method to improve interferogram quality by means of exploiting the NCB. To this end, we first define a new interferogram, which has the same resolution as the HR image. Then we formulate the interferometric relationship between the two images into a compressive sensing (CS) model, which contains the proposed HR interferogram. With the sparsity of interferogram in appropriate domains, we model the interferogram formation as a typical sparse recovery problem. Due to the speckle effect in coherent radar imaging, the sensing matrix of our CS model is inherently random. We theoretically prove that the sensing matrix satisfies restricted isometry property, and thus the interferogram recovery performance is guaranteed. Furthermore, we provide a fast interferogram formation algorithm by exploiting computationally efficient structures of the sensing matrix. Numerical experiments show that the proposed method provides better interferogram quality in the sense of reduced phase noise and obtain extrapolated interferogram spectra with respect to CB processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源