论文标题
关于Schrödinger地图的独特性,具有低规律性的大数据
On Uniqueness for Schrödinger maps with low regularity large data
论文作者
论文摘要
我们证明,在$ C_TL_X^{\ infty} \ cap l_t^{\ infty}(\ dot {h}^1_x^1_x \ cap \ cap \ dot dot {h}^2_x)中,我们证明了二维schrödinger映射的初始值问题的解决方案是唯一的。为了证明证明,我们遵循麦加哈根的论点,并结合了尤多维奇的论点,提高了其技术部分。
We prove that the solutions to the initial-value problem for 2-dimensional Schrödinger maps are unique in $C_tL_x^{\infty} \cap L_t^{\infty} (\dot{H}^1_x\cap \dot{H}^2_x)$. For the proof, we follow McGahagan's argument with improving its technical part, combining Yudovich's argument.