论文标题
通过表示分解来学习跨域可推广的特征
Learning Cross-domain Generalizable Features by Representation Disentanglement
论文作者
论文摘要
深度学习模型在不同领域的概括性有限。具体而言,将知识从可用的纠缠域特征(源/目标域)和分类特征转移到目标域中新看不见的分类特征是一个有趣而困难的问题,在当前文献中很少讨论。此问题对于许多现实世界应用至关重要,例如改善诊断分类或医学成像中的预测。为了解决这个问题,我们提出了基于共同信息的分离神经网络(MIDNET)提取可概括的特征,从而使知识转移到目标域中看不见的绝对特征。所提出的中网开发为半监督的学习范式,以减轻对标记数据的依赖性。这对于数据注释需要罕见的专业知识以及强烈的时间和劳动力的实际应用很重要。我们在手写数字数据集和用于图像分类任务的胎儿超声数据集上演示了我们的方法。实验表明,我们的方法的表现优于最新方法,并使用稀疏标记的数据实现预期性能。
Deep learning models exhibit limited generalizability across different domains. Specifically, transferring knowledge from available entangled domain features(source/target domain) and categorical features to new unseen categorical features in a target domain is an interesting and difficult problem that is rarely discussed in the current literature. This problem is essential for many real-world applications such as improving diagnostic classification or prediction in medical imaging. To address this problem, we propose Mutual-Information-based Disentangled Neural Networks (MIDNet) to extract generalizable features that enable transferring knowledge to unseen categorical features in target domains. The proposed MIDNet is developed as a semi-supervised learning paradigm to alleviate the dependency on labeled data. This is important for practical applications where data annotation requires rare expertise as well as intense time and labor. We demonstrate our method on handwritten digits datasets and a fetal ultrasound dataset for image classification tasks. Experiments show that our method outperforms the state-of-the-art and achieve expected performance with sparsely labeled data.