论文标题
Cuxbi2Te2SE中可能的晶格和充电顺序
Possible Lattice and Charge Order in CuxBi2Te2Se
论文作者
论文摘要
金属插入分层的拓扑绝缘体材料(例如二进制硫代基因葡萄基比2x3(x = te或se))产生了新型的二维电子气体物理学,相对于超导性的相变,以及有趣的磁场状态。最近感兴趣的是晶格扭曲,密度波排序和新现象在互相关引起的不稳定性附近的出现之间的相互作用相互作用。在这里,我们研究了Cu间缩钙化对三元基因源性BI2TE2SE的影响。我们报告了在室温下周期性晶格失真的CU0.3BI2TE2SE中的发现,以及围绕TD = 220k的电荷密度波转换。我们还首次报告了Cuxbi2Te2SE系统的完整研究,以及Cu间倒流对0.0 $ \ le $ x $ \ le $ 0.5的晶体结构,声子结构和电子特性的影响。我们的电子衍射研究揭示了ABC堆叠所禁止的相互晶格位置的强烈bragg斑点,可能是由于堆叠断层或超晶格而导致的。 C轴晶格参数以0 $ \ lt $ x $ \ lt $ 0.2的X差异,但对于较高的X,速度急剧下降。同样,拉曼声子模式$ a^2_ {1g} $和$ e_g $单调的单调柔软,对于0 $ \ lt $ x $ \ lt $ 0.2,但对于x $ \ gt $ 0.2而急剧硬化。这表明CU可能会插入高达x $ \ sim $ 0.2,然后是较高值的部分站点取消构成。最终的应变使0.2 $ \ lt $ x $ \ lt $ 0.3区域容易受到不稳定性和扭曲的影响。我们的结果表明,在TD = 220 K上方存在不兑换的CDW。这项工作加强了普遍的思想,即互插的构成显着促进了分层的辣椒剂的晶格和自由度的不稳定性。
Metal intercalation into layered topological insulator materials such as the binary chalcogenide Bi2X3 (X=Te or Se) has yielded novel two-dimensional electron-gas physics, phase transitions to superconductivity, as well as interesting magnetic ground states. Of recent interest is the intercalation-driven interplay between lattice distortions, density wave ordering, and the emergence of new phenomena in the vicinity of instabilities induced by intercalation. Here, we examine the effects of Cu-intercalation on the ternary chalcogenide Bi2Te2Se. We report the discovery, in Cu0.3Bi2Te2Se, of a periodic lattice distortion at room temperature, together with a charge density wave transition around Td = 220K. We also report, for the first time, a complete study of the CuxBi2Te2Se system, and the effect of Cu-intercalation on crystal structure, phonon structure, and electronic properties for 0.0 $\le$ x $\le$ 0.5. Our electron diffraction studies reveal strong Bragg spots at reciprocal lattice positions forbidden by ABC stacking, possibly resulting from stacking faults, or a superlattice. The c-axis lattice parameter varies monotonically with x for 0 $\lt$ x $\lt$ 0.2, but drops precipitously for higher x. Similarly, Raman phonon modes $A^2_{1g}$ and $E_g$ soften monotonically for 0 $\lt$ x $\lt$ 0.2 but harden sharply for x $\gt$ 0.2. This indicates that Cu likely intercalates up to x $\sim$0.2, followed by partial site-substitutions at higher values. The resulting strain makes the 0.2 $\lt$ x $\lt$ 0.3 region susceptible to instabilities and distortions. Our results point toward the presence of an incommensurate CDW above Td = 220 K. This work strengthens prevalent thought that intercalation contributes significantly to instabilities in the lattice and charge degrees of freedom in layered chalcogenides.