论文标题
预测控制和沟通共同设计:高斯过程回归方法
Predictive Control and Communication Co-Design: A Gaussian Process Regression Approach
论文作者
论文摘要
虽然对无线连接的遥控器是由多个执行器传感器对(即控制系统)组成的可扩展控制系统的关键推动器,但它带来了两个技术挑战。由于缺乏无线资源,只能提供有限数量的控制系统,从而使国家观察过时。此外,即使在计划后,通过无线通道收到的状态观察也会被扭曲,从而阻碍了控制稳定性。为了解决这些问题,在本文中,我们提出了一种调度算法,该算法保证了最终收到州的信息年龄(AOI)。同时,对于非安排传感器传感器对,我们提出了机器学习(ML)辅助预测控制算法,其中使用高斯过程回归(GPR)预测状态。由于GPR预测信誉随输入数据的AOI降低,因此应共同设计预测性控制和基于AOI的调度程序。因此,我们通过Lyapunov优化框架制定了联合调度和传输功率优化。数值模拟证实了所提出的共同设计的预测性控制和基于AOI的调度与使用无状态预测的循环组织调度程序相比,基于AOI的计划可以达到较低的控制误差。
While Remote control over wireless connections is a key enabler for scalable control systems consisting of multiple actuator-sensor pairs, i.e., control systems, it entails two technical challenges. Due to the lack of wireless resources, only a limited number of control systems can be served, making the state observations outdated. Further, even after scheduling, the state observations received through wireless channels are distorted, hampering control stability. To address these issues, in this article we propose a scheduling algorithm that guarantees the age-of-information (AoI) of the last received states. Meanwhile, for non-scheduled sensor-actuator pairs, we propose a machine learning (ML) aided predictive control algorithm, in which states are predicted using a Gaussian process regression (GPR). Since the GPR prediction credibility decreases with the AoI of the input data, both predictive control and AoI-based scheduler should be co-designed. Hence, we formulate a joint scheduling and transmission power optimization via the Lyapunov optimization framework. Numerical simulations corroborate that the proposed co-designed predictive control and AoI based scheduling achieves lower control errors, compared to a benchmark scheme using a round-robin scheduler without state prediction.