论文标题
在爱因斯坦 - 艾特理论中的球面对称分析解决方案和裸奇异点
Spherically Symmetric Analytic Solutions and Naked Singularities in Einstein-Aether Theory
论文作者
论文摘要
在目前的工作中,我们分析了爱因斯坦 - 座理论允许使用静态的所有可能的球形对称外部真空解决方案。我们表明,有四类的解决方案对应于自由参数组合的不同值,$ c_ {14} = C_1+C_4 $,它们是:$ 0 <c_ {14} <2 $,$ c_ {14} <0 $,$ c_ {14} = 14} = 2 $ and $ c_ and $ c_ {14} = 0 $ {14} = 0 $。我们提出了$ C_ {14} = 3/2、16/9、48/25,-16、2 $和$ 0 $的明确分析解决方案。第一种情况有一些病理行为,而其余的则具有$ r = 0 $的奇异性,并且渐近平坦。对于解决方案,$ c_ {14} = 16/9,48/25 \,\ mathrm {\,and \,} \,-16 $,我们表明没有地平线,既没有杀戮也不是通用的地平线,因此我们有赤裸裸的奇异性。最后,$ c_ {14} = 2 $的解决方案具有指标组件作为径向坐标的任意函数,当选择与schwarzschild案例相同时,除了$ r = 0 $的schwarzschild case中,我们在有限半径上具有物理奇异性。这种特征与一般相对论完全不同。
In the present work we analyze all the possible spherically symmetric exterior vacuum solutions allowed by the Einstein-Aether theory with static aether. We show that there are four classes of solutions corresponding to different values of a combination of the free parameters, $c_{14}=c_1+c_4$, which are: $ 0 < c_{14}<2$, $c_{14} < 0$, $c_{14}=2$ and $c_{14}=0$. We present explicit analytical solutions for $c_{14}=3/2, 16/9, 48/25, -16, 2$ and $0$. The first case has some pathological behavior, while the rest have all singularities at $r=0$ and are asymptotically flat spacetimes. For the solutions $c_{14}=16/9, 48/25\, \mathrm{\, and \,}\, -16$ we show that there exist no horizons, neither Killing nor universal horizon, thus we have naked singularities. Finally, the solution for $c_{14}=2$ has a metric component as an arbitrary function of radial coordinate, when it is chosen to be the same as in the Schwarzschild case, we have a physical singularity at finite radius, besides the one at $r=0$. This characteristic is completely different from General Relativity.