论文标题
通过Hooper-Thurston-Veech Construction,大型映射课程组中的Loxodromic元素
Loxodromic elements in big mapping class groups via the Hooper-Thurston-Veech construction
论文作者
论文摘要
令$ s $为无限型表面,$ p \ in S $。我们表明,适用于无限型表面的伪anosov元素的Thurston-Veech构造产生了无限的许多loxodromic元素,用于$ mod(s; p)$在loop groop $ l(s; p)上的作用(s; p)$,这些元素不会留下任何有限的有限量subsurface $ s $ s'\ s $ s'\ s $ s'\ s $ s \ s $ s \ s'此外,用Bavard-Walker的语言,Thurston-Veech的构造产生了任何重量的肉质元素。由于Bavard和Walker的作品,任何$ mod(s; p)$的子组包含两个不同重量的“ Thurston-Deech Loxodromics”,都具有非平凡的准态性的无限维空间。
Let $S$ be an infinite-type surface and $p\in S$. We show that the Thurston-Veech construction for pseudo-Anosov elements, adapted for infinite-type surfaces, produces infinitely many loxodromic elements for the action of $Mod(S;p)$ on the loop graph $L(S;p)$ that do not leave any finite-type subsurface $S'\subset S$ invariant. Moreover, in the language of Bavard-Walker, Thurston-Veech's construction produces loxodromic elements of any weight. As a consequence of Bavard and Walker's work, any subgroup of $Mod(S;p)$ containing two "Thurston-Veech loxodromics" of different weight has an infinite-dimensional space of non-trivial quasimorphisms.