论文标题
Volterra-Choquet非线性操作员
Volterra-Choquet nonlinear operators
论文作者
论文摘要
在本文中,我们研究了可以将传达经典线性伏特拉操作员的某些特性转移到非线性伏尔泰拉 - choquet运算符上,该操作员通过通过非线性choquet积分而替换了相对于Lebesgue度量的经典线性积分而获得的,而与非辅助集合功能相比。研究了紧凑性,Lipschitz和循环特性。
In this paper we study to what extend some properties of the classical linear Volterra operators could be transferred to the nonlinear Volterra-Choquet operators, obtained by replacing the classical linear integral with respect to the Lebesgue measure, by the nonlinear Choquet integral with respect to a nonadditive set function. Compactness, Lipschitz and cyclicity properties are studied.