论文标题

肾脏活检中纤维化,管状萎缩和肾小球硬化的神经网络分割

Neural Network Segmentation of Interstitial Fibrosis, Tubular Atrophy, and Glomerulosclerosis in Renal Biopsies

论文作者

Ginley, Brandon, Jen, Kuang-Yu, Rosenberg, Avi, Yen, Felicia, Jain, Sanjay, Fogo, Agnes, Sarder, Pinaki

论文摘要

肾小球硬化,间质纤维化和管状萎缩(IFTA)是无法恢复的肾脏损伤的组织学指标。在标准临床实践中,肾脏病理学家在显微镜下,在视觉上评估了硬化性肾小球的百分比和IFTA肾皮质受累的百分比。 IFTA的估计是一个主观过程,这是由于各种谱系和形态表现的定义。现代人工智能和计算机视觉算法具有通过严格的定量来降低观察者间变异性的能力。在这项工作中,我们将卷积神经网络应用于周期性酸 - chiff染色的肾脏活检中的肾小球硬化和IFTA的分割。卷积网络方法在机构内部保存数据中实现了高性能,并在智能间保存数据中实现了适度的性能,该数据在培训中从未见过。卷积方法表现出有趣的特性,例如学习比提供的地面真理更好地预测区域,并发展其自身对节段性硬化的概念化。随后对IFTA和肾小球硬化百分比的估计显示与地面真相相关。

Glomerulosclerosis, interstitial fibrosis, and tubular atrophy (IFTA) are histologic indicators of irrecoverable kidney injury. In standard clinical practice, the renal pathologist visually assesses, under the microscope, the percentage of sclerotic glomeruli and the percentage of renal cortical involvement by IFTA. Estimation of IFTA is a subjective process due to a varied spectrum and definition of morphological manifestations. Modern artificial intelligence and computer vision algorithms have the ability to reduce inter-observer variability through rigorous quantitation. In this work, we apply convolutional neural networks for the segmentation of glomerulosclerosis and IFTA in periodic acid-Schiff stained renal biopsies. The convolutional network approach achieves high performance in intra-institutional holdout data, and achieves moderate performance in inter-intuitional holdout data, which the network had never seen in training. The convolutional approach demonstrated interesting properties, such as learning to predict regions better than the provided ground truth as well as developing its own conceptualization of segmental sclerosis. Subsequent estimations of IFTA and glomerulosclerosis percentages showed high correlation with ground truth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源