论文标题

通过网络学习发现保险欺诈阴谋

Uncovering Insurance Fraud Conspiracy with Network Learning

论文作者

Liang, Chen, Liu, Ziqi, Liu, Bin, Zhou, Jun, Li, Xiaolong, Yang, Shuang, Qi, Yuan

论文摘要

欺诈性索赔检测是保险业面临的最大挑战之一。阿里巴巴的回报率保险,提供有关电子商务平台产品回报的回报邮资薪酬,每天都会收到成千上万的潜在欺诈性索赔。这种故意滥用保险政策可能会导致巨大的财务损失。为了检测和防止欺诈性保险索赔,我们开发了一种新颖的数据驱动程序,以通过学习网络信息来识别有组织的欺诈者组,这是对财务损失的主要贡献之一。在本文中,我们在索赔人中介绍了一个设备共享网络,然后开发了一种基于图形学习算法的欺诈检测的自动解决方案,以将欺诈者与普通客户和发现的一组有组织的欺诈者分开。与以前部署的基于规则的分类器相比,该解决方案可在阿里巴巴应用于80%以上的精度,同时涵盖了44%的可疑帐户。我们的方法可以轻松有效地推广到其他类型的保险。

Fraudulent claim detection is one of the greatest challenges the insurance industry faces. Alibaba's return-freight insurance, providing return-shipping postage compensations over product return on the e-commerce platform, receives thousands of potentially fraudulent claims every day. Such deliberate abuse of the insurance policy could lead to heavy financial losses. In order to detect and prevent fraudulent insurance claims, we developed a novel data-driven procedure to identify groups of organized fraudsters, one of the major contributions to financial losses, by learning network information. In this paper, we introduce a device-sharing network among claimants, followed by developing an automated solution for fraud detection based on graph learning algorithms, to separate fraudsters from regular customers and uncover groups of organized fraudsters. This solution applied at Alibaba achieves more than 80% precision while covering 44% more suspicious accounts compared with a previously deployed rule-based classifier after human expert investigations. Our approach can easily and effectively generalizes to other types of insurance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源