论文标题
极化辐射转移的接近最佳角四倍体
Near optimal angular quadratures for polarised radiative transfer
论文作者
论文摘要
在三维(3D)辐射转移(RT)问题中,就辐射场的角度积分所需的离散射线方向的数量而言,张量二次汇总通常不是最佳的。在本文中,我们得出了一组新的角度正常规则,这些规则更适合于解决短期和长期特征正式求解器的3D RT问题。这些四二氮比当前使用的四二氮更合适,用于在不假设局部热力学平衡(非LTE)的情况下与极化辐射的生成和转移相关的辐射场张量计算。我们表明,相对于高斯 - trapezoidal乘积二次化,我们的新四足动物可以节省大约30 \,\%的计算时间。
In three-dimensional (3D) radiative transfer (RT) problems, the tensor product quadratures are generally not optimal in terms of the number of discrete ray directions needed for a given accuracy of the angular integration of the radiation field. In this paper, we derive a new set of angular quadrature rules that are more suitable for solving 3D RT problems with the short- and long-characteristics formal solvers. These quadratures are more suitable than the currently used ones for the numerical calculation of the radiation field tensors that are relevant in the problem of the generation and transfer of polarised radiation without assuming local thermodynamical equilibrium (non-LTE). We show that our new quadratures can save up to about 30\,\% of computing time with respect to the Gaussian-trapezoidal product quadratures with the same accuracy.