论文标题
优化弱重力镜头调查的断层扫描
Optimising tomography for weak gravitational lensing surveys
论文作者
论文摘要
本文的主题是优化弱透镜断层扫描:我们通过Nelder-Mead-Mead算法对总统计误差的量度最小化,这是层析成圈边缘的红移的函数,以优化弱透镜的敏感性,并对不同的优化靶标进行弱化的敏感性。在假设高斯可能性的假设下为$ W_0 W_0 W_A $ CDM-MODEL的参数并使用Euclid的保守调查规范进行工作,我们比较了一个设置的,等距和优化的bin设置,并发现一般而言的装置设置非常接近最佳设置,而与等距的设置相比是最佳选择的,也是最佳的。更重要的是,我们发现使用已经很少的层析成像箱可以获得几乎饱和的信息内容。这对于具有较大红移误差的光度红移调查至关重要。我们考虑了可以从参数协方差(或等效地从Fisher-Matrix)计算出的优化过程的大量目标,将这些研究扩展到信息熵测量,例如Kullback-Leibler-Divergence,并得出结论,在许多情况下,在许多情况下,装备量产率在许多情况下会导致我们通过分析量支持的最佳选择。
The subject of this paper is optimisation of weak lensing tomography: We carry out numerical minimisation of a measure of total statistical error as a function of the redshifts of the tomographic bin edges by means of a Nelder-Mead algorithm in order to optimise the sensitivity of weak lensing with respect to different optimisation targets. Working under the assumption of a Gaussian likelihood for the parameters of a $w_0 w_a$CDM-model and using Euclid's conservative survey specifications, we compare an equipopulated, equidistant and optimised bin setting and find that in general the equipopulated setting is very close to the optimal one, while an equidistant setting is far from optimal and also suffers from the ad hoc choice of a maximum redshift. More importantly, we find that nearly saturated information content can be gained using already few tomographic bins. This is crucial for photometric redshift surveys with large redshift errors. We consider a large range of targets for the optimisation process that can be computed from the parameter covariance (or equivalently, from the Fisher-matrix), extend these studies to information entropy measures such as the Kullback-Leibler-divergence and conclude that in many cases equipopulated binning yields results close to the optimum, which we support by analytical arguments.