论文标题

每个具有连续规范的可分离复合物空间都是同构函数的同构

Every separable complex Fréchet space with a continuous norm is isomorphic to a space of holomorphic functions

论文作者

Bonet, José

论文摘要

扩展了Mashreghi和Ransford的结果,我们证明,具有连续标准的每个复杂可分离的无限尺寸尺寸空间对于连续包含在单位盘上的空间或复杂平面上的空间中的空间是同构的,该空间包含一个含有密集的子空间,该空间包含多个元素。结果,存在核弗雷奇的空间的例子,而没有界限近似。

Extending a result of Mashreghi and Ransford, we prove that every complex separable infinite dimensional Fréchet space with a continuous norm is isomorphic to a space continuously included in a space of holomorphic functions on the unit disc or the complex plane, which contains the polynomials as a dense subspace. As a consequence examples of nuclear Fréchet spaces of holomorphic functions without the bounded approximation exist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源