论文标题

甲状腺功能亢进症患者的房颤风险评分

The Atrial Fibrillation Risk Score for Hyperthyroidism Patients

论文作者

Derevitskii, Ilya V., Savitskaya, Daria A., Babenko, Alina Y., Kovalchuk, Sergey V.

论文摘要

甲状腺毒性(TT)与总体和心脏的死亡率增加有关。主要的甲状腺毒性风险之一是房颤(AF)。右AF预测,有助于医疗个人开处方正确的药物和正确的外科手术或放射碘治疗。这项研究的主要目标是创建一种用于实际治疗和诊断AF的方法。这项研究提出了一种评估TT患者发生房颤风险的新方法。这种方法考虑了并发症的特征和慢性疾病的细节。基于甲状腺毒性患者的病史创建模型。我们使用机器学习方法来创建多种模型。每个模型都有优势和缺点,具体取决于诊断和医疗目的。最终的模型在AF预测的不同指标中显示出很高的结果。这些模型解释且简单地使用。因此,在AF的治疗和诊断方面,医学专家可以将模型用作支持和决策系统(DSS)的一部分。

Thyrotoxicosis (TT) is associated with an increase in both total and cardiovascu-lar mortality. One of the main thyrotoxicosis risks is Atrial Fibrillation (AF). Right AF predicts help medical personal prescribe the correct medicaments and correct surgical or radioiodine therapy. The main goal of this study is creating a method for practical treatment and diagnostic AF. This study proposes a new method for assessing the risk of occurrence atrial fibrillation for patients with TT. This method considers both the features of the complication and the specifics of the chronic disease. A model is created based on case histories of patients with thyrotoxicosis. We used Machine Learning methods for creating several models. Each model has advantages and disadvantages depending on the diagnostic and medical purposes. The resulting models show high results in the different metrics of the prediction of AF. These models interpreted and simple for use. Therefore, models can be used as part of the support and decision-making system (DSS) by medical specialists in the treatment and diagnostic of AF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源