论文标题

从S1(21ag)pi偶联系统的旋转缠结三对对的光学投影和空间分离

Optical projection and spatial separation of spin entangled triplet-pairs from the S1 (21Ag-) state of pi-conjugated systems

论文作者

Pandya, Raj, Gu, Qifei, Cheminal, Alexandre, Chen, Richard Y. S., Booker, Edward P., Soucek, Richard, Schott, Michel, Legrand, Laurent, Mathevet, Fabrice, Greenham, Neil C., Barisien, Thierry, Musser, Andrew J., Chin, Alex W., Rao, Akshay

论文摘要

S1(21AG)状态是一种天然和合成PI偶联材料的光学深色状态,可以在光电过程中起关键作用,例如能量收集,光保护和单裂裂变。尽管这一重要性广泛,但S1(21ag)波函数的电子结构的直接实验特征仍然很少且不确定,尽管高级理论预测其具有丰富的多激发特征。在这里,研究原型聚合物,聚丙烯和类胡萝卜素时,我们在实验上证明了S1(21ag-)是一个叠加态,具有旋转式三胞胎激子(1(1(tt)))的强烈贡献。我们进一步表明,使用三重态吸收过渡对S1(21ag)波函数对S1(21ag)波函数进行选择性投影,将1(TT)组件选择为空间分离的三胞胎对歧管,最多可以通过一个大小命令增强了寿命,并且其产量强烈依赖于Chromophrophore coupleplothere coupleple的水平。我们的结果为PI共轭材料中的21个状态提供了统一的图像,并开放了新的途径,以利用其在单线裂变,光生物学和生成分子量子技术的纠缠(Spin-1)颗粒中的动力学。

The S1 (21Ag-) state is an optically dark state of natural and synthetic pi-conjugated materials that can play a critical role in optoelectronic processes such as, energy harvesting, photoprotection and singlet fission. Despite this widespread importance, direct experimental characterisations of the electronic structure of the S1 (21Ag-) wavefunction have remained scarce and uncertain, although advanced theory predicts it to have a rich multi-excitonic character. Here, studying an archetypal polymer, polydiacetylene, and carotenoids, we experimentally demonstrate that S1 (21Ag-) is a superposition state with strong contributions from spin-entangled pairs of triplet excitons (1(TT)). We further show that optical manipulation of the S1 (21Ag-) wavefunction using triplet absorption transitions allows selective projection of the 1(TT) component into a manifold of spatially separated triplet-pairs with lifetimes enhanced by up to one order of magnitude and whose yield is strongly dependent on the level of inter-chromophore coupling. Our results provide a unified picture of 21Ag-states in pi-conjugated materials and open new routes to exploit their dynamics in singlet fission, photobiology and for the generation of entangled (spin-1) particles for molecular quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源