论文标题
任意特征的希钦连接
The Hitchin connection in arbitrary characteristic
论文作者
论文摘要
我们给出了Hitchin连接的代数几何结构,在积极特征(少数例外)也有效。一个关键要素是替代Narasimhan-Atiyah-BottKähler形式,该形式实现了曲线上捆绑包的模量空间上的class依者的Chern类。作为替代品,我们根据贝林森 - 塞赫特曼(Beilinson-Schechtman)和bloch-esnault引起的痕量复合物理论,使用该线束的Atiyah类别的明确实现。
We give an algebro-geometric construction of the Hitchin connection, valid also in positive characteristic (with a few exceptions). A key ingredient is a substitute for the Narasimhan-Atiyah-Bott Kähler form that realizes the Chern class of the determinant-of-cohomology line bundle on the moduli space of bundles on a curve. As replacement we use an explicit realisation of the Atiyah class of this line bundle, based on the theory of the trace complex due to Beilinson-Schechtman and Bloch-Esnault.