论文标题
放大:静态图像中人群计数的缩放机制
ZoomCount: A Zooming Mechanism for Crowd Counting in Static Images
论文作者
论文摘要
本文提出了一种新颖的方法,用于在静态图像中以低至高密度的场景进行人群计数。当前的方法不能很好地处理巨大的人群多样性,因此在极端情况下的表现不佳,在这种情况下,图像不同区域的人群密度太低或太高,导致人群低估或高估。拟议的解决方案是基于以下观察结果:以一种专门的方式检测和处理此类极端情况会导致更好的人群估计。此外,现有方法发现很难区分实际的人群和混乱的背景区域,从而进一步高估了。为了解决这些问题,我们提出了一种简单而有效的模块化方法,首先将输入图像细分为固定尺寸的补丁,然后将其送入四向分类模块,将每个图像贴片标记为低,中等,高密度或无cros。该模块还为每个标签提供了一个计数,然后通过专门设计的新决策模块对其进行分析,以决定图像是属于两个极端情况(非常低还是非常高的密度)还是正常情况。图像(指定为高密度极端或正常情况)分别通过专用缩放或正常的贴片制造块,然后以固定尺寸贴片的形式将其路由到回归器,以进行人群估算。广泛的实验评估表明,在大多数评估标准下,所提出的方法在四个基准上的最新方法都优于最先进的方法。
This paper proposes a novel approach for crowd counting in low to high density scenarios in static images. Current approaches cannot handle huge crowd diversity well and thus perform poorly in extreme cases, where the crowd density in different regions of an image is either too low or too high, leading to crowd underestimation or overestimation. The proposed solution is based on the observation that detecting and handling such extreme cases in a specialized way leads to better crowd estimation. Additionally, existing methods find it hard to differentiate between the actual crowd and the cluttered background regions, resulting in further count overestimation. To address these issues, we propose a simple yet effective modular approach, where an input image is first subdivided into fixed-size patches and then fed to a four-way classification module labeling each image patch as low, medium, high-dense or no-crowd. This module also provides a count for each label, which is then analyzed via a specifically devised novel decision module to decide whether the image belongs to any of the two extreme cases (very low or very high density) or a normal case. Images, specified as high- or low-density extreme or a normal case, pass through dedicated zooming or normal patch-making blocks respectively before routing to the regressor in the form of fixed-size patches for crowd estimate. Extensive experimental evaluations demonstrate that the proposed approach outperforms the state-of-the-art methods on four benchmarks under most of the evaluation criteria.